Michiel Hazewinkel 1 CWI

Direct line: +31-20-5924204 POBox 94079
Secretary: +31-20-5924233 1090GB Amsterdam
Fax: +31-20-5924166

E-mail: mich@cwi.nl original version: 16 April, 1995

revised version:17 April 1995

Linear vs Nonlinear Mathematics
with special emphasis on

the KdV Equation and other Liouville Integrable Dynamical Systems

Michiel Hazewinkel
CcwI
POBox 94079
1090GB Amsterdam
The Netherlands
mich@cwi.nl

Abstract. After some words on non-linear versus linear mathematics, arguments are
presented to show that Liouville integrable systems are just one step away from linear
ones. In particular attention is drawn to the fact that many Liouville integrable systems
are fractional linear quotients of linear ones. Conjecturally this is always the case.
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1. Introduction.

The original title that the coordinators and organizers of this KAV course inflicted on me
was “The importance of nonlinear mathematics”. And in an unguarded moment, possibly
distracted by other concerns, I was unwise enough to raise no objections.

Also I thought that surely somewhere in the past, at least one of those giants, would have
given some glowing lecture, praising the nonlinear, and raising the aim of truly understanding
nonlinear phenomena to some sort of holy grail. Maybe so. But though a general consensus
certainly can be detected that the nonlinear world is indeed where the real rewards are, I have
found no convincing account, and very few general real hard results of the type “such and such
phenomena can not happen in a linear setting”.

Another argument would be that such a glowing account as I failed to find is hardly
needed. Just look at the Mathematics Subject Classification Scheme. With the exception of (most
of) sections 15 (Linear algebra), 46 (Functional analyis), 47 (Operator theory), and a handfull of
subsections dealing specifically with linear somethings (such as linear ordinary differential
equations, linear partial differential equations, linear programming, linear control systems, ...) all
of mathematics is about nonlinear mathematics. From this point of view it is surprising that there
are in fact books with ‘non-linear’ in the title.

In the past I have had occasion to write (in the Series Editor’s prefaces of books in the
series MIA, e.g. [1]):

“The nonlinear world is where the rewards are. Linear models are honest and also a bit sad
and depressing: proportional efforts and results. It is in the nonlinear world that infinitesimal
inputs may result in macroscopic outputs (or vice versa). To appreciate what I am hinting at: if
electronics were linear we would have no fun with transistors and computers, we would have no
TV; in fact you would not be reading these lines.”

Few people would quarrel with this statement. Though the possibly implied suggestion that
there is no fun to be had, and that there are no challenges left, in linear mathematics has to be
taken with large numbers of grains of sand; more like an ocean full. Indeed, quantum mechanics
is all about Hilbert space and self-adjoint linear operators, ... . It is also, of course, infinite
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dimensional, giving lots of room for all kinds of fascinating phenomena. But also in finite
dimensional linear algebra, I can easily find hosts of problems that are important, fascinating,
and, seemingly, out of reach for the moment.

I see no way of providing anything like a scientific mathematical foundation for the
statement in quotes above. Much depends on what is the precise meaning of ‘linear
mathematics’, and that, as we shall note below, is not as easy to define as one might think. Below
are some few initial remarks on the general case at hand: “the linear versus the nonlinear”. The
matter will not be settled shortly.

I shall concentrate on aspects relevant to the KdV equation and other Liouville integrable
(systems of) equations (both finite and infinite dimensional ones). More concretely, I shall try to
give some evidence that while these equations are definitely non-linear, they are in fact the next
class.

2. A few general remarks on linear and nonlinear mathematics.
Let me start with a quotation from [12] (in several parts):

“the closely guarded secret of this subject (differential equations) is that it has not yet
attained the status and dignity of a science but still enjoys the freedom and freshness of pre-
scientific study ... . The work of classification and systematization of specimens has hardly
begun.

This is true even of differential equations which belong to the genus technically described
as ‘ordinary, linear equations’. ... In the case of non-linear equations, Lie’s theory of
transformation groups has done little but suggest a scheme of classification. An inviting flora or
rare equations and exotic problems lies before a botanical excursion in the nonlinear field. ....

The history of mathematical physics during the last century may be divided into two
periods—the linear period and the non-linear period. In those happy far-off times of the linear
period, all differential equations were linear and the principle of superposition reigned supreme.
In the present distressful times most differential equations are non-linear and no effective general
method of solution has yet been proposed.”

I would submit that the first paragraph of the quotation (which also has been quoted several
times by others, e.g. [7]), holds for all of nonlinear mathematics (in so far as that term is
defined); I would also submit that at least one recognizable species has been identified and to
some extent decribed—the species of Liouville integrable dynamical systems.

One difficulty is that if linearity is abandoned, in general no structure is left at all. No one
is optimistic enough to think that we will have anything like a complete classification of all
possible phase portraits of ordinary differential equations (even qualitatively) in the next few
centuries (or even ever). Thus strong substitute structures are needed that are compatible (in
some sense) with the equations involved. These can be algebraic (symmetry groups e.g.),
geometric, combinatorial, ... . In the case of Liouville integrable systems there are both strong
algebraic and strong geometric structures present and that has certainly played a major role in
their emergence as a recognized species.

3. What is linear, what is nonlinear.

Here are a few past, present, and future buzzwords from nonlinear mathematics:
singularities, bifurcations and catastophes, pattern formation, chaos and strange attractors,
fractals and selfsimilarity, crystal growth, ... . Of all it is generally believed that we are dealing
with (mostly) genuinely nonlinear phenomena. However, that statement could use some
clarification.

3.1. Meaning of non-linear? To find out what the phrase nonlinear means lets turn to the
encyclopaedic sources. The encyclopaedia [3] has articles on Non-linear boundary value
problem, Non-linear connection, Non-linear differential equation, Non-linear equation, Non-
linear functional, Non-linear functional analysis, Non-linear integral equation, Non-inear



Michiel Hazewinkel 3 CWI

Direct line: +31-20-5924204 POBox 94079

Secretary: +31-20-5924233 1090GB Amsterdam

Fax: +31-20-5924166

E-mail: mich@cwi.nl original version: 16 April, 1995
revised version:17 April 1995

operator, Non-linear oscillations, Non-linear partial differential equation, Non-linear potential,
Non-linear programming. In all cases there is an underlying linear setting—usually a vector
space—and the non-linear something is defined as a something that does not respect that
underlying linear structure. Without such an underlying linear setting the phrase ‘non-linear’ is
not defined, and as such ‘non-linear mathematics’ is an undefined notion (though of course it
carries intuitive meaning). The material in [5] agrees.

3.2. Superposition principle. Similarly the phrase that there is a superposition principle is
largely meaningless. Consider an ordinary differential equation in R”, and for simplicity assume
that solutions (with perscribed initial conditions) are unique and always exist for all time. Take
two solutions x(z), y(z), and let z(z) be the unique solution that takes the value
z(0) = x(0) + y(0) at time 0. Then (x(z), y(z)) > z(¢) = x(¢) * y(z) is a nonlinear superposition
principle. Its presence means nothing. It is shocking that there is in fact a published article
devoted to just this observation and nothing more.

3.3. Transformations. Consider the set of polynomial equations

Xy + X3 —XpXq — x1x32 =1
—_ =2 _ _ 2 + 2 _ 2 O
Xy = 2XpXg — Xy X3 — X X3+ XpX3 = XgXg — X3 =

Xy = Xy + Xy + 2%, X +2X,X;5 + XX + X %5 =0

This is without question a nonlinear set of polynomial equations. The fact that they are in fact a
nonlinear invertible transformation (and a rather simple one) of a set of linear equations, viz

is besides the point. Especially because there is in all likelyhood no algorithmic test to decide
whether a set of nonlinear polynomial equations is a non-linear invertible transformation of a
linear set or not.

3.4. Finite dimensional Liouville integrable dynamical systems. The remark just made is
important for the case of the KAV equation and its finite dimensional relatives. A Hamiltonian
dynamical system on R*" (or more generally on a finite dimensional symplectic manifold) given
by a Hamitonian H = H, is called Liouville integrable (unfortunately more generally also called
‘completely integrable’), if there are n-1 additional independent conserved quantities H,,--+,H,
in involution with H, and each other, i.e. such that {H;,H J-} = (0 for all i, j, where {,} denotes the
Poisson bracket.

It follows that there are new coordinates p;,q;, obtainable from the other ones by means of
a.socalged canonical transformation, such that in these new coordinates the dynamical system is
given by

p;=0

q; = D;

(action-angle coordinates). See e.g. [2] for some more details. Here, again, there is in all
probability no deciding algorithm.



Michiel Hazewinkel 4 CWI

Direct line: +31-20-5924204 POBox 94079

Secretary: +31-20-5924233 1090GB Amsterdam

Fax: +31-20-5924166

E-mail: mich@cwi.nl original version: 16 April, 1995
revised version:17 April 1995

3.5. Inbeddings. Consider a differentiable manifold M and a dynamical system on it given
by a vectorfield X. For instance one with a strange attractor (a chaotic one). Let C(M) be the
linear space of real valued differentiable functions on M. Let Ly be the first order differential
operator on C(M) defined by the vectorfield. Then the evolution of any function fon M
(including the coordinates on M) is given by the first order linear differential equation

J}=fo'

3.6. This last observation is one reason why it is quite difficult to formulate a precise and
defendable statement of the kind: “Such and such a phenomenon belongs essentially to non-
linear mathematics”.

Even without the caveats already mentioned, such statements tend to be doubtful. For
instance in that pre-eminently nonlinear field of singularity theory, singularities and relations
between them turn out to be controlled by simple Lie algebras, [1], themselves originally
invented as a linearization of transformation groups.

4. Covering linearizations.

The category of differentiable manifolds and dynamical systems on them is not noticeably
self-dual and there is a vast difference between being inbeddable and being a quotient. Here are
some observations concerning quotient properties of Liouville integrable systems.

4.1. The KdV equation. Let us start with the KdV equation in its integrated form
w+6u+u_ =0 4.1.1)

The standard KdV equation arises from this one by differentiation with respect to x (and
replacing u, with u). Now consider an associated set of linear equations

I,+4I,.=0

4.1.2
I, =aT (+12)

Let I be a solution of (4.1.2). Then, as is easily verified,
u=I./T

is a solution of (4.1.1). It is somewhat remarkable that this still works for operator valued
functions. Le. the commutativity of the multiplication on the real line plays no role in this. This
is the starting point of the monograph [6], and probably should be explored much further (and
also for other Liouville integrable systems).

Thus the KdV equation (4.1.1) emerges as a fractional linear quotient of the system (4.1.2)
at least for these solutions. This, however, can be generalized, and in fact, at least at the formal
level, the KdV is indeed a fractional linear quotient of a linear dynamical system, [4]. This is
implied by the socalled inverse scattering method in the case of the KdV. The analytic details
remain to be worked out.

4.2. Matrix Riccati equations.
The matrix Riccati equation is the following equation for an »n X m matrix P

P=AP+PD+PBP+C (4.2.1)

where the A, B, C, D are known matrices of the right sizes so that (4.2.1) makes sense. Riccati
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equations turn up all over mathematics, for instance in atmospheric tranport problems, oscillation
theory, the calculus of variations, linear Hamiltonian systems, ... . There are several thousands of
articles on it and one monograph, [9], and another monograph is in preparation. One particularly
important area of application of in particular matrix Riccati equations is in optimal control of
linear systems and filtering problems for such systems (Kalman filtering), cf e.g. [13]. Riccati
equations are definitely nonlinear and exhibit finite escape times, one characteristic phenomenon
of nonlinearity (and this implies that they are not in any way non-linear transformations of a
linear system).

For our purposes here assume that the matrices A, B, C, D are constant (independent of
time). In this case consider the following linear dynamical system

d(X) (A cYx 427
d\Y ) \-B -D\Y (4.2.2)

for the n X m matrix X and the m x m matrix Y. Now let X, Y be a solution of (4.2.2) and observe

that P= XY is a solution of (4.2.1) (as long as Y is invertible; non invertibility of ¥
corresponds to finite escape time phenomena). Carrying this analysis a bit further it leads to the
observation that the Grassmann manifold of m-planes in n+ m space is the proper place to
understand the matrix Riccati equation, it leads to a detailed understanding of its finite escape
time behaviour, and it leads to the observation that the matrix Riccati equation is a fractional
linear quotient of a linear system.

4.3. The Toda lattices. The nonlinear Toda lattices

&n — _eqnﬂ =gy + eqn G p-1
4.3.1)
go =%, gny =%, n=1-N (

also are fractional linear qoutients of linear systems, [11], and more generally this holds for the
AKSRS (Adler, Kostant, Symes, Reyman, Semenov Tian-Shansky) systems. Those are obtained
by a splitting of a Lie algebra and the covering linear space is the socalled double of that Lie
algebra [10].

4.4. KP equarion. The same picture holds for the KP equation, [4]. Indeed, following the
ideas of Michio Sato, the KP equation emerges as a projective limit of matrix Riccati equations.
This holds for the whole KP hierarchy (and it is as a hierarchy that this picture emerges most
clearly).

Now the KP hierarchy is thought to be rather universal in the world of Liouville integrable
systems (in the sense that other Liouville integrable systems arise from it by ‘specialization’).
Thus it becomes a research problem to investigate when specialization preserves a fractional
linear quotient situation. Given this and the observations in 4.1 - 4.3 above, it looks like
Liouville integrability and being a fractional linear quotient of a linear system have a great deal
to do with one another.

5. Universality of the KdV and NLS.

One remarkable fact about the KdV equation, the nonlinear Schrédinger (NLS) equation,
and their many relatives is that they turn up so frequently in applications. There is a good reason
for that. As soon as one goes one step better than a linear approximation, they tend to turn up.
This illustrates besides the universality also their closeness to the linear world.
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5.1. Universality of the KdV equation. Let us start with the usual standard linear one-
dimensional wave equation

9 J*
72‘/{=v3_§x%’_ (5.1.1)

Weak dispersion allows us to treat separately waves travelling in the two directions. So

d d
Tg’”"ﬁxz:o (5.12)

Now consider the dispersion law between the wave vector &, the velocity v and the frequency @
for a linear wave exp(iart — kr)

o = kv(k). (5.1.3)

Here v(k) goes to v, as k — 0 and is in general an analytic function of k which can be expanded

in a power series. In the absence of dissipation it is a power series in k2. To the next
approximation (with respect to no dispersion), therefore

w = vok — Bk (5.1.4)
and this gives rise to a third order correction term in (5.1.2) giving

1% d 2’

Now assume, as is reasonable for classical systems, that there is a conservation law

dy g

=0 1.
B + 3 (5.1.6)
This gives

. 0°
J=V0W+ﬂ§‘%‘cf“

and inserting the next correction term this gives

. v «
J=W+ﬁ;%’f+5w2 (5.1.7)

and hence

d d >
-étl’i+v0—£+ﬁ—3x—‘—éf—+aw

oy
X =0
ax

Ew (5.1.8)

Now make the changes of variables & =x — v, (50 go to a coordinate system that moves along
with (the centre of) the travelling waves), and y = (/ B)7 to find the KdV equation in the form
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on  &n . _an
—_—+ +n—=0. 5.19
> ;{5—3— n % (5.19)

Thus the Korteweg de Vries equation arises in quite general circumstances as the next
approximation to the linear one as soon as dispersion and non-linearity are taken into account
(but no dissipation).

5.2. Universality of the non-linear Schrédinger equation. The NLS equation (non-linear
Schrdinger equation) looks as follows.

| Ca
i v, 2=~ + alyy G21)

It is also Liouville integrable (a notion that is not really yet well defined for infinite dimensional
systems such as PDE’s). This equation also can be shown to arise naturally in a wide variety of
circumstances as a result of incorporating weak nonlinearity and weak dispersion. In this case for
fields differing but little from harmonic ones.

The material of 5.1 and 5.2 above was taken from the introduction of [8]. Incidentally, the
interested reader is advised to consult the original Russian edition (Teoriya solitonov, Nauka,
1980); the translation is so poor that referring to the original will anyway be frequently
necessary.

6. Coda.

In the above a number of arguments have been given indicating that Liouville integrable
systems are so to speak the next one one encounters after the linear approximation. These
arguments are briefly as follows: covering linearizations with a fractional linear mapping giving
the Liouville integrable systems as a quotient (section 4), and the universality properties hinted at
in section 5. There are many more, including superposition properties (of a rather more
substantial nature than the nonsense of subsection 3.2 above). One more potential line of
reasoning I would like to add very briefly. The familiar transcendental function such as exp and
the trigonometric ones can be seen as arising from the simplest linear differential equations.
Going a little further one finds the socalled Painlevé transcendents which in several ways seem
to be fundamentally connected to Liouville integrable systems.
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